Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C.

نویسندگان

  • J Mao
  • D D Price
  • D J Mayer
چکیده

In a rat model of morphine tolerance, we examined the hypotheses that thermal hyperalgesia to radiant heat develops in association with the development of morphine tolerance and that both the development and expression of thermal hyperalgesia in morphine-tolerant rats are mediated by central NMDA and non-NMDA receptors and subsequent protein kinase C (PKC) activation. Tolerance to the analgesic effect of morphine was developed in rats utilizing an intrathecal repeated treatment regimen. The development of morphine tolerance and thermal hyperalgesia was examined by employing the tail-flick test and paw-withdrawal test, respectively. Intrathecal MK 801 (an NMDA receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; a non-NMDA receptor antagonist), or GM1 ganglioside (an intracellular PKC inhibitor) treatment was given to examine the effects of these agents on the development and expression of thermal hyperalgesia in morphine-tolerant rats. Tolerance to the analgesic effect of morphine was reliably developed in rats following once daily intrathecal (onto the lumbosacral spinal cord) injection of 10 micrograms of morphine sulfate for 8 consecutive days as demonstrated by the decreased analgesia following morphine administration on day 8 as compared to that on day 1. In association with the development of morphine tolerance, thermal hyperalgesia to radiant heat developed in these same rats. Paw-withdrawal latencies were reliably decreased in morphine-tolerant rats as compared to nontolerant (saline) controls when tested on day 8 before the last morphine treatment and on day 10 (i.e., 48 hr after the last morphine treatment). The coincident development of morphine tolerance and thermal hyperalgesia was potently prevented by intrathecal coadministration of morphine with MK 801 (10 nmol) or GM1 (160 nmol), and partially by CNQX (80 nmol). MK 801 (5, 10 nmol, not 2.5 nmol) and CNQX (80, 160 nmol, not 40 nmol), but not GM1 (160 nmol), also reliably reversed thermal hyperalgesia in rats rendered tolerant to morphine when tested 30 min after each drug treatment on day 10 (48 hr after the last morphine treatment). The data indicate that thermal hyperalgesia develops in association with the development of morphine tolerance and that the coactivation of central NMDA and non-NMDA receptors is crucial for both the development and expression of thermal hyperalgesia in morphine-tolerant rats. Furthermore, intracellular PKC activation plays a critical role in the development of thermal hyperalgesia in morphine-tolerant rats.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on the possible similar mechanism of ultra low dose-induced hyperalgesia and development of tolerance to analgesia in male rats: an study based on the role of Gs signaling pathway

Introduction: Ultra low dose (ULD) morphine induces hyperalgesia which is mediated by excitatory Gscoupled opioid receptors. This study was designed to investigate the development of tolerance to hyperalgesic effect of morphine. Also we attempt to seek possible similarity, in view of Gs proteins, between hyperalgesic effect of ULD and hyperalgesic effect after tolerance to HD. Method: Male ...

متن کامل

Interaction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain

The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...

متن کامل

Interaction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain

The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...

متن کامل

Repeated Administration of Baclofen Modulates TRPV-1 Channel Expression by PKC Pathway in Dorsal Root Ganglia of Spinal Cord in Morphine Tolerance Model of Rats

Background: Tolerance and dependence to anti-nociceptive effect of morphine restricted its use. Nowadays co-administration of morphine and other drugs suggests diminishing this tolerance. Baclofen is one of the drugs that may be beneficial in the attenuation of tolerance to morphine. Studies have shown that changes in transient receptor potential vanilloid type 1 (TRPV-1) expression during admi...

متن کامل

Melatonin prevents morphine-induced hyperalgesia and tolerance in rats: role of protein kinase C and N-methyl-D-aspartate receptors

BACKGROUND Morphine-induced hyperalgesia and tolerance significantly limits its clinical use in relieving acute and chronic pain. Melatonin, a pineal gland neurohormone, has been shown to participate in certain neuropsychopharmacological actions. The present study investigated the effect of melatonin on morphine-induced hyperalgesia and tolerance and possible involvement of protein kinase C (PK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 1994